
Diamond Effect in Object Oriented Programming
Languages

Rajesh Jangade, Anil Barnwal, Satyakam Pugla

Amity Institute of Biotechnology,
 Amity University, Noida, Uttar Pradesh, India

Abstract---Now a day the maximum percentage of the people
from the world of computer programmers are using object
oriented programming languages like C++, Java, Eiffel, Dot
Net and etc. Why, because these languages are incorporated
with some easiness, advanced, re-useful and needful features.
And Inheritance is most important portion of any object
oriented programming languages that plays vital role to like
the language by programmers. Here I am going to discuss
some basics problems and their solutions related to a situation
of multiple inheritance called Diamond Effect. This problem
comes in existence when we use multiple inheritance where
one class is inherited by two different sub classes and again
these two subclasses are inherited by any single class. Multiple
inheritance in object oriented language like C++ is a powerful,
but tricky tool, that often leads to problems if not handled
carefully. Diamond effect occurs in most of the object oriented
languages and each language has some different syntax for
coding. In this paper whatever coding is used, will be in the
reference of C++.

Keywords: OOP, inheritance, diamond effect, base class,
derived class and virtual base class.

I. INTRODUCTION
Introduction of diamond effect includes so many things and
topics that we have to understand first. Here I am trying to
emphasize on the topics which will be coming in the way
of diamond effect problems. Rest of all other topics will be
discussed lightly sometimes [7][8]. The main path is
OOP Language => Inheritance => Multiple Inheritance =>
Diamond Effect
Introduction of Object Oriented Programming Language:
Any computer language which supports the following
features is called object oriented programming language:
A. Class and Object

Class is a collection of properties of anything where
property includes each and everything related to that
thing. Whereas object is a real time entity which
properties are described or written inside the class. In
other word we can say that object is just an instance of
the predefined class.

B. Data Abstraction
Data abstraction is a way to show only required
properties of anything and hide the other details or
properties which are not required currently. Example:
Electric power supply system in a building, the people
who are living in the building are given only switch
boards to use. We know which switch is for fan and
witch switch is for tube light and so on. If we need to
on the fan then we just need to press the switch which

is connected to fan only. Here we don’t need to know
about the internal wire connection the switch board.
Here we are given switches to use and all others details
of the switch board is already hidden, is called data
abstraction.

C. Data Encapsulation
Data Encapsulation is way to bind or wrap the related
things together. In together word we can say that all
the properties of any things should wander together.
Whenever we need any of the properties we just need
to search the thing and then we call desired property,
instead of searching the property and the things
separately.

D. Inheritance
Inheritance is a way to use the properties of predefined
class in the new classes. We can say, it provides a
facility which is known as reusability in area of
computer languages. For example we know any person
is inherited by his son so his son can use all or some of
properties of father. In such case, the class which
properties are being used by is called base/parent/super
class and the class which is using properties is called
derived/child/sub class. The types of inheritance and
their properties will be discussed later in paragraph
1.2.

II. CONCEPT OF INHERITANCE

It is already briefly discussed in paragraph 1.1.4;
inheritance is a way to use the properties of predefined
class in the new classes [1][3].
Inheritance is denoted by arrows as shown in Fig. 1 that
shows connectivity between two classes.

Fig. 1 Arrows: used to connect two classes.

In coding the special symbol colon (:) is used as symbol of
inheritance.
There are four types of inheritance.
A. Simple Inheritance

When any single class inherits only one class then it is
called simple or single inheritance.

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3104

 (a)

(b)

Fig.2 (a) and (b) show the two forms of simple
inheritance.

In Fig. no 2(a) one class A is inherited by other class B,
similarly in Fig. 2(b) class Dog inherits the properties of
class Animal.

Basic Syntax:
class A

{

Some Member Data
 Some Member Functions
};

class B : public A
{
 Some Member Data

 Some Member Functions
};
class Animal

{

Some Member Data
 Some Member Functions
};
class Dog : public Animal
{
 Some Member Data
 Some Member Functions
};

B. Multilevel Inheritance
When one class is inherited by second class and again this
second class is inherited by third class then it is called
multilevel inheritance. It is diagrammatically shown in Fig.
3 [1][3].

 (a)

(b)
Fig. 3 (a) and (b) showing the example of multilevel
inheritance

Basic Syntax:
class A

{

Some Member Data
 Some Member Functions
};

class B : public A
{

 Some Member Data
 Some Member Functions

};
class C : public B
{

 Some Member Data
 Some Member Functions

};

C. Hierarchical Inheritance
When one class is inherited by more than one class
then it is called hierarchical inheritance.

 (a)

(b)

Fig. 4(a) and (b) showing the examples of multilevel
inheritance

Student

Arts CommercScience

Base

Derive 1 Derive 2

A Base/Parent/Super

B Derived/Child/Sub Class

Animal Base/Parent/Super Class

Dog Derived/Child/Sub Class

A Base Class

B Derived class of class A

C Derived class of class B

Derive 1

Second level inheritance

Derive 2

Base

First level inheritance

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3105

In Fig. 4(b) it is shown that students of arts, science and
commerce are ultimately students so these tree different
classes Arts, Science and Commerce inherit the properties
of one base class Student.

Basic Syntax:
class Student

{

Some Member Data
 Some Member Functions
};
class Arts : public Student
{

 Some Member Data
 Some Member Functions

};
class Science : public Student
{

 Some Member Data
 Some Member Functions

};
class Commerce : public Student
{

 Some Member Data
 Some Member Functions

};
D. Multiple Inheritance

When two or more than two classes are inherited by
one class then it is called multiple inheritance[1][3][5].
In other words we can say that in multiple inheritance
any single class inherits more than one base classes as
shown in Fig. 5.

Fig. 5 Multiple Inheritance

Basic Syntax:
class Base1
{

Some Member Data
 Some Member Functions
};
class Base2
{

 Some Member Data
 Some Member Functions

};
class Derived : : public Base1, public
Base2
{

 Some Member Data
 Some Member Functions

};
The detail description of multiple inheritance is discussed
in paragraph 1.3 with suitable examples

III. CONCEPT OF MULTIPLE INHERITANCE
We have above discussed that in multiple inheritance any
single class uses the properties of more than one base class.
In other words, there is a class being derived from many
classes [1][3][5].
It is clear from Fig. 6(a) that result of the student is
combined evaluation of both internal and external exams.
So the Result class inherits the properties of both class
Internal Exam and External Exam. Similarly in Fig. 6(b)
there are two different classes Animals and Pet, and the
third class Cat is a pet animal so this Cat class uses the
properties of both Animals and Pet classes.
Basically the Diamond Effect is a situation occurs in the
case of multiple inheritance and will be discussed later.

Basic Syntax:

class InternalExam

{
 Some Member Data
 Some Member Functions
};
class ExternalExam
{

 Some Member Data
 Some Member Functions

 };
 class Result : public InternalExam,
public ExternalExam
 {

 Some Member Data
 Some Member Functions

};

(a)

(b)
Fig. 6 Examples of multiple inheritance

Cat

Pet Animals

Derived

Base 2 Base 1

Result

External
Exam

Internal
Exam

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3106

Now let us see the copy of program of above example:
//Declaration of class InternalExam
class InternalExam
{
public:
char subject[5][20];
 int Imark[5];
void getInternalDetails();
 void showInternalDetails();
};

//Declaration of class ExternalExam
class ExternalExam
{
public:
char subject[5][20];
 int Emark[5];
void getExternalDetails();
 void showExternalDetails();
};
//Declaration of class Result
class Result : public InternalExam, public ExternalExam
{
public:
char subject[5][20];
 int Tot_Mark[5];
 void getResult();
 void showResult();
};

// Definition of class InternalExam
void InternalExam : : getInternalDetails()
{
 cout<<”\nEnter 5 name of subjects and marks obtained
by student\n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject Name:”;
 cin>>subject[i];
 cout<<”Enter Marks:”;
 cin>>Imark[i];
 }
}
void InternalExam : : showInternalDetails()
{
 cout<<”\nSubject \t\t Marks\n”;
 for(int i=0; i<5; i++)
 {
 cout<<endl<<subject[i];
 cout<<”\t\t”<<Imark[i];
 }
}

// Definition of class ExternalExam
void ExternalExam : : getExternalDetails()
{
 cout<<”\nEnter 5 name of subjects and marks obtained
by student\n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject Name:”;
 cin>>subject[i];
 cout<<”Enter Marks:”;
 cin>>Emark[i];
 }
}
void ExternalExam : : showExternalDetails()

{
 cout<<”\nSubject \t\t Marks\n”;
 for(int i=0; i<5; i++)
 {
 cout<<endl<<subject[i];
 cout<<”\t\t”<<Emark[i];
 }
}

// Definition of class Result
void Result : : getResult()
{
 cout<<”\nEnter 5 name of subjects \n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject Name:”;
 cin>>subject[i];
 Tot_Mark[i] = Imark[i] + Emark[i];
 }
}
void Result: : showResult()
{
 cout<<”\nSubject \t\t Marks\n”;
 for(int i=0; i<5; i++)
 {
 cout<<endl<<subject[i];
 cout<<”\t\t”<<Tot_Mark[i];
 }
}

In the above program in function geResult() it is shown that
Tot_Mark are the sum of Imark and Emark of the
corresponding subject. Here Imark and Emark are the
members of class InternalExam and ExternalExam
subsequently but being used in function getResult() of class
Result. The getResult() is able to access these variables
only because of the inheritance.

IV. INTRODUCTION OF DIAMOND EFFECT

Now let us discuss about a modified situation of above
program where there are four classes:

 Student
 InternalExam
 ExternalExam
 Result

The Student includes some personal details, internalExam
include details of internal exam, ExternalExam include
details of external exam and class Result include the result
of the students as shown above [4][6][7].
Here the class Student is inherited by both the classes
InternalExam and ExternalExam using hierarchical
inheritance and again these two classes InternalExam and
ExternalExam are inherited by single class Result using
multiple inheritance. And above both situations are shown
in Fig. 7.
Here both the situations are shown in two separate Figures.
Let’s try to transform the Fig. 7 in form of single Fig. and
in combined form of hierarchical and multiple inheritance
and Fig. 7 becomes now Fig. 8. It is cleared from Fig. 8
that, it looks like a diamond and this way of representing
the structure of classes is called diamond effect.

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3107

Fig. 7 Showing hierarchical and multiple inheritances
separately

Fig. 8 Showing an aspect of Diamond Effect

In technical word we can define the diamond effect as
“when one base class is having two different derived
classes and again these derived classes have common and
single derived class then this situation is called Diamond
Effect in object oriented programming language.”[3][7]
In Fig. 8 one class Student is having two different derived
classes InternalExam and ExternalExam and again these
two derived classes is having single derived class Result.
Classes InternalExam and ExternalExam are child class of
base class Student and at same time these two classes are
also base class of one common derived class Result.

Basic Syntax:
class Student
{

Some Member Data
 Some Member Functions
};
class InternalExam : public Student

{

Some Member Data
 Some Member Functions
};
class ExternalExam : public Student
{

 Some Member Data
 Some Member Functions

};
class Result : public InternalExam,
public ExternalExam
{

 Some Member Data
 Some Member Functions

};
Copy of the program of classes InternalExam,
ExternalExam and Result has already been written in
paragraph 1.3. So here I am giving the copy of program of
class Student only.
//Declaration of class Student
class Student
{
public:
char SName[20];
 int Roll_No;
 char course[20];
 void getStudentDetails();
 void showStudentDetails();
 };

//Definition of class Student
void Student : : getStudent()
{
 cout<<”\nEnter Name of Student\n”;
 cin>>SName;
 cout<<”\nEnter Roll Number of Student\n”;
 cin>>Roll_No;
 cout<<”\nEnter Course of Student\n”;
 cin>>course;
};
void Student : : showStudent()
{
 cout<<”\nName of the Student:\t”<<SName;
 cout<<”\nRoll Number of the Student:\t”<<Roll_No;
 cout<<”\nCourse of the Student:\t”<<course; };

V. ADVANTAGE OF DIAMOND EFFECT

In case of diamond effect, we say that there are at least four
classes where one class has two child classes and these two
children classes are having one common child class. As we
know, in inheritance any derived class can use members of
the base class [7][8].

Result

External
Exam

Internal
Exam

Student

External
Exam

Internal
Exam

Result

Student

External
Exam

Internal
Exam

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3108

Here the function getInternalDetail() can access the
getStudent() and so on. Similarly the function
getExternalDetail() can also access the getStudent() and so
on. Let us see the modified version of getInternalDetail()
and getExternalDetail() functions:
void InternalExam : : getInternalDetails()
{
 getStudent(); //accessing the function of
base class
cout<<”\nEnter 5 name of subjects and marks obtained by
student\n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject
Name:”;
 cin>>subject[i];
 cout<<”Enter Marks:”;
 cin>>Imark[i];
 }
}
void ExternalExam : : getExternalDetails()
{
 getStudent(); //accessing the function of
base class
 cout<<”\nEnter 5 name of subjects and marks
obtained by student\n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject
Name:”;
 cin>>subject[i];
 cout<<”Enter Marks:”;
 cin>>Emark[i];
 }
}
In the above program, highlighted lines show that
getInternalDetail() and getExternalDetail() functions using
the same function getStudent(). It has no problem because
both the classes InternalExam and ExternalExam have the
same parent class Student().
Similarly the member functions of class Result can also
access to the members of class InternalExam and
ExternalExam because Result is child class of both the
classes. Here are the modified versions of functions
getResult() and showResult().
void Result : : getResult()
{
getInternalDetails(); // accessing the member function of
class // InternalExam
getExternalDetails(); // accessing the member function of
class //ExternalExam
cout<<”\nEnter 5 name of subjects \n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject
Name:”;
 cin>>subject[i];
 Tot_Mark[i] = Imark[i] + Emark[i];
 }
}

void Result: : showResult()
{
showInternalDetails(); // accessing the member function
of class // InternalExam
showExternalDetails(); // accessing the member function
of class //ExternalExam
 cout<<”\nSubject \t\t Marks\n”;
 for(int i=0; i<5; i++)
 {
 cout<<endl<<subject[i];
 cout<<”\t\t”<<Tot_Mark[i];
 }
}
There are again some highlighted lines which are showing
that functions getResult() and showResult() are accessing
the functions getInternalExam(), getExternalExam() and
showInternalExam(), showExternalExam(), because the
Result class is derived from both the base classes.

VI. PROBLEM ASSOCIATED WITH DIAMOND EFFECT
Before starting discussion about the problems associated
with diamond effect concept let us try to restructure the
Fig. 8 as shown in Fig. 9.

Fig. 9 Diamond Effect with class and their member
functions.

As it is shown in Fig. 9, we can say that the class Student is
grandparent of Result class hence the Result class can
directly access the members of Student class as:

void Result : : getResult()
{
//getInternalDetails();
//getExternalDetails();
getStudent(); //Direct access to member of grandparent
class(ERROR)

Result:
getResult()

showResult()

Student:
getStudent()

showStudent()

ExternalExam:
getExternalDetails()

showExternalDetails()

InternalExam:
getInternalDetails()

showInternalDetails()

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3109

cout<<”\nEnter 5 name of subjects \n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject
Name:”;
 cin>>subject[i];
 Tot_Mark[i] = Imark[i] + Emark[i];
 }
}
void Result: : showResult()
{
//showInternalDetails();
//showExternalDetails();
showStudent();//Direct access to member of grandparent
class(ERROR)
 cout<<”\nSubject \t\t Marks\n”;
 for(int i=0; i<5; i++)
 {
 cout<<endl<<subject[i];
 cout<<”\t\t”<<Tot_Mark[i];
 }
}
Error: there are two ways for Result class to access the
members of Student class as:
 Result->InternalExam->Student
 and
 Result->ExternalExam->Student
Then the question is by which way the members of Student
class will be accessed? This situation is called ambiguity
problem in the world of object oriented programming.

VII. SOLUTION OF PROBLEM ASSOCIATED WITH

DIAMOND EFFECT
Here the virtual base class comes in the life. We make the
class Student as virtual base class for the class Result. For
this we use virtual keyword when create derived class
[2][6][7]. So the following syntax is used to make virtual
base class as:

Fig. 10 Virtual Base Class

class Student
{
Some Member Data
 Some Member Functions
};
class InternalExam : virtual public Student

{
Some Member Data
 Some Member Functions
};
class ExternalExam : virtual public Student
{
 Some Member Data
 Some Member Functions
};
class Result : public InternalExam, public ExternalExam
{
 Some Member Data
 Some Member Functions
 };

By using above syntax the classes InternalExam and
ExternalExam will create a virtual path for the next derived
class Result to first base class Student. Fig. 10 shows
diagrammatic form of virtual base class.
And the above given program with error syntax is rectified
as :
void Result : : getResult()
{
//getInternalDetails();
//getExternalDetails();
getStudent(); //Direct access to member of grandparent
class(No Error)

cout<<”\nEnter 5 name of subjects \n”;
 for(int i=0; i<5; i++)
 {
 cout<<”Enter Subject
Name:”;
 cin>>subject[i];
 Tot_Mark[i] = Imark[i] + Emark[i];
 }
}
void Result: : showResult()
{
//showInternalDetails();
//showExternalDetails();
showStudent();//Direct access to member of grandparent
class(No Error)
 cout<<”\nSubject \t\t Marks\n”;
 for(int i=0; i<5; i++)
 {
 cout<<endl<<subject[i];
 cout<<”\t\t”<<Tot_Mark[i];
 }
}
So the concept of virtual base class is used to solve the
problem generated in situation of diamond effect.

Result:
getResult()

showResult()

Student:
getStudent()

showStudent()

ExternalExam:
getExternalDetails()

showExternalDetails()

InternalExam:
getInternalDetails()

showInternalDetails()

V
i
r
t
u
a
l
P
a
t
h

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3110

REFERENCES

[1] Donna Malayeri, Jonathan Aldrich, CZ: Multiple Inheritance without
Diamond Effect, in OOPSlA09.

[2] What is a virtual base class?, CareerRide.com.
[3] G. Singh. Single Versus Multiple Inheritance in Object Oriented

Programming. SIGPLAN OOPS., (5): 34-43, 1994.
[4] A. Shalit. The Dylan Reference Manual: The definitive Guide of the

new object-oriented dynamic Language. Addison Wesley, 1997.
[5] Mathew Cochran. Coding Better: Using Classes V Interfaces,

January 18, 2009.
[6] V. Krishnapriya, Dr K Ramar. Exploring the difference between

object oriented class inheritance and Interface using coupling
Measures., 2010, International Conference on Advances in
Computer Engineering.

[7] E. Balaguruswami. Object Oriented Programming with C++, 6th
Edition, Tata McGraw-Hill Education.

[8] Herbert Schildt , C++: The Complete Reference, 4th Edition, 2002.

Rajesh Jangade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3104-3111

www.ijcsit.com 3111

